What about the planet?

"Our" planet Earth has been there a long time ago before the living creatures of the Nature appear on it.
Is necessary to preserve and protect our house, the planet and all the known Nature processes and creatures. If we fail there are a lot of possibilities to affect the Nature in a way that we really don't understand and could suppose a lot of problems including the extinguishing of some of the Nature processes or creatures.
Read this file for more information.

What about planet formation?

Since planet Earth has been “always” there for a human... is huge to imagine the way a small set of pieces of universe could create a planet full of live like Earth. Each human culture has it's own version about this concept, of course planets are so big that no one could hide the reality...


Our actual knowledge about astronomical objects is limited but constantly growing.
A planet is defined by these properties:
  • is massive enough to be rounded by its own gravity,
  • is not massive enough to cause thermonuclear fusion, and
  • has cleared its neighbouring region of planetesimals.

Formation

It is not known with certainty how planets are formed. The prevailing theory is that they are formed during the collapse of a nebula into a thin disk of gas and dust. A protostar forms at the core, surrounded by a rotating protoplanetary disk. Through accretion (a process of sticky collision) dust particles in the disk steadily accumulate mass to form ever-larger bodies. Local concentrations of mass known as planetesimals form, and these accelerate the accretion process by drawing in additional material by their gravitational attraction. These concentrations become ever denser until they collapse inward under gravity to form protoplanets. After a planet reaches a diameter larger than the Moon, it begins to accumulate an extended atmosphere, greatly increasing the capture rate of the planetesimals by means of atmospheric drag.

When the protostar has grown such that it ignites to form a star, the surviving disk is removed from the inside outward by photoevaporation, the solar wind, Poynting–Robertson drag and other effects. Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a single larger planet or release material for other larger protoplanets or planets to absorb. Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Protoplanets that have avoided collisions may become natural satellites of planets through a process of gravitational capture, or remain in belts of other objects to become either dwarf planets or small bodies.

When the protostar has grown such that it ignites to form a star, the surviving disk is removed from the inside outward by photoevaporation, the solar wind, Poynting–Robertson drag and other effects. Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a single larger planet or release material for other larger protoplanets or planets to absorb. Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Protoplanets that have avoided collisions may become natural satellites of planets through a process of gravitational capture, or remain in belts of other objects to become either dwarf planets or small bodies.

The energetic impacts of the smaller planetesimals (as well as radioactive decay) will heat up the growing planet, causing it to at least partially melt. The interior of the planet begins to differentiate by mass, developing a denser core. Smaller terrestrial planets lose most of their atmospheres because of this accretion, but the lost gases can be replaced by outgassing from the mantle and from the subsequent impact of comets. (Smaller planets will lose any atmosphere they gain through various escape mechanisms.)

Chemical element

A chemical element (often just element when the chemical context is implicit) is a pure chemical substance consisting of a single type of atom distinguished by its atomic number, which is the number of protons in its atomic nucleus. Elements are divided into metals, metalloids, and nonmetals.

The lightest chemical elements, including hydrogen, helium and smaller amounts of lithium, beryllium and boron, are thought to have been produced by various cosmic processes during the Big Bang and cosmic ray spallation. Production of heavier elements, from carbon to the very heaviest elements, proceeded by stellar nucleosynthesis in certain planetary nebulae and supernovae, which blast these elements into space where they are available for later planetary formation in solar systems such as our own. The high abundance of oxygen, silicon, and iron on Earth reflects their common production in such stars.

  • Atomic number

    The atomic number of an element is equal to the number of protons in each atom, and defines the element. For example, all carbon atoms contain 6 protons in their atomic nucleus; so the atomic number of carbon is 6. Carbon atoms may have different numbers of neutrons; atoms of the same element having different numbers of neutrons are known as isotopes of the element.

    The number of protons in the atomic nucleus also determines its electric charge, which in turn determines the number of electrons of the atom in its non-ionized state. The electrons are placed into atomic orbitals that determine the atom's various chemical properties. The number of neutrons in a nucleus usually has very little effect on an element's chemical properties (except in the case of hydrogen and deuterium). Thus, all carbon isotopes have nearly identical chemical properties because they all have six protons and six electrons, even though carbon atoms may, for example, have 6 or 8 neutrons. That is why the atomic number, rather than mass number or atomic weight, is considered the identifying characteristic of a chemical element.[citation needed].

    The symbol for atomic number is Z.
  • Isotopes

    Isotopes are atoms of the same element (that is, with the same number of protons in their atomic nucleus), but having different numbers of neutrons. Most (66 of 94) naturally occurring elements have more than one stable isotope. Thus, for example, there are three main isotopes of carbon. All carbon atoms have 6 protons in the nucleus, but they can have either 6, 7, or 8 neutrons. Since the mass numbers of these are 12, 13 and 14 respectively, the three isotopes of carbon are known as carbon-12, carbon-13, and carbon-14, often abbreviated to 12C, 13C, and 14C. Carbon in everyday life and in chemistry is a mixture of 12C, 13C, and (a very small fraction of) 14C atoms.
  • Isotopic mass and atomic mass

    The mass number of an element, A, is the number of nucleons (protons and neutrons) in the atomic nucleus. Different isotopes of a given element are distinguished by their mass numbers, which are conventionally written as a superscript on the left hand side of the atomic symbol (e.g., 238U). The mass number is always a simple whole number and has units of "nucleons." An example of a referral to a mass number is "magnesium-24," which is an atom with 24 nucleons (12 protons and 12 neutrons).
  • Allotropes

    Atoms of chemically pure elements may bond to each other chemically in more than one way, allowing the pure element to exist in multiple structures (spacial arrangements of atoms), known as allotropes, which differ in their properties. For example, carbon can be found as diamond, which has a tetrahedral structure around each carbon atom; graphite, which has layers of carbon atoms with a hexagonal structure stacked on top of each other; graphene, which is a single layer of graphite that is very strong; fullerenes, which have nearly spherical shapes; and carbon nanotubes, which are tubes with a hexagonal structure (even these may differ from each other in electrical properties). The ability of an element to exist in one of many structural forms is known as 'allotropy'.
  • Properties

    Several kinds of descriptive categorizations can be applied broadly to the elements, including consideration of their general physical and chemical properties, their states of matter under familiar conditions, their melting and boiling points, their densities, their crystal structures as solids, and their origins.

    • General properties
      Several terms are commonly used to characterize the general physical and chemical properties of the chemical elements. A first distinction is between metals, which readily conduct electricity, nonmetals, which do not, and a small group, (the metalloids), having intermediate properties and often behaving as semiconductors.

      A more refined classification is often shown in colored presentations of the periodic table. This system restricts the terms "metal" and "nonmetal" to only certain of the more broadly defined metals and nonmetals, adding additional terms for certain sets of the more broadly viewed metals and nonmetals. The version of this classification used in the periodic tables presented here includes: actinides, alkali metals, alkaline earth metals, halogens, lanthanides, transition metals, post-transition metals; metalloids, noble gases, polyatomic nonmetals, diatomic nonmetals, and transition metals. In this system, the alkali metals, alkaline earth metals, and transition metals, as well as the lanthanides and the actinides, are special groups of the metals viewed in a broader sense. Similarly, the polyatomic nonmetals, diatomic nonmetals and the noble gases are nonmetals viewed in the broader sense. In some presentations, the halogens are not distinguished, with astatine identified as a metalloid and the others identified as nonmetals.
    • States of matter
      Another commonly used basic distinction among the elements is their state of matter (phase), whether solid, liquid, or gas, at a selected standard temperature and pressure (STP). Most of the elements are solids at conventional temperatures and atmospheric pressure, while several are gases. Only bromine and mercury are liquids at 0 degrees Celsius (32 degrees Fahrenheit) and normal atmospheric pressure; caesium and gallium are solids at that temperature, but melt at 28.4 °C (83.2 °F) and 29.8 °C (85.6 °F), respectively.
    • Melting and boiling points
      Melting and boiling points, typically expressed in degrees Celsius at a pressure of one atmosphere, are commonly used in characterizing the various elements. While known for most elements, either or both of these measurements is still undetermined for some of the radioactive elements available in only tiny quantities. Since helium remains a liquid even at absolute zero at atmospheric pressure, it has only a boiling point, and not a melting point, in conventional presentations.
    • Densities
      The density at a selected standard temperature and pressure (STP) is frequently used in characterizing the elements. Density is often expressed in grams per cubic centimeter (g/cm3). Since several elements are gases at commonly encountered temperatures, their densities are usually stated for their gaseous forms; when liquefied or solidified, the gaseous elements have densities similar to those of the other elements.

      When an element has allotropes with different densities, one representative allotrope is typically selected in summary presentations, while densities for each allotrope can be stated where more detail is provided. For example, the three familiar allotropes of carbon (amorphous carbon, graphite, and diamond) have densities of 1.8–2.1, 2.267, and 3.515 g/cm3, respectively.
    • Crystal structures
      The elements studied to date as solid samples have eight kinds of crystal structures: cubic, body-centered cubic, face-centered cubic, hexagonal, monoclinic, orthorhombic, rhombohedral, and tetragonal. For some of the synthetically produced transuranic elements, available samples have been too small to determine crystal structures.

Solar system

According to the IAU, there are eight planets in the Solar System. In increasing distance from the Sun, the planets are:
  • ☿ Mercury
  • ♀ Venus
  • ⊕ Earth
  • ♂ Mars
  • ♃ Jupiter
  • ♄ Saturn
  • ♅ Uranus
  • ♆ Neptune
Jupiter is the largest, at 318 Earth masses, whereas Mercury is the smallest, at 0.055 Earth masses.

The planets of the Solar System can be divided into categories based on their composition:

  • Terrestrials:

    Planets that are similar to Earth, with bodies largely composed of rock: Mercury, Venus, Earth and Mars. At 0.055 Earth masses, Mercury is the smallest terrestrial planet (and smallest planet) in the Solar System, whereas Earth is the largest terrestrial planet.
  • Gas giants (Jovians): 

    Planets largely composed of gaseous material and significantly more massive than terrestrials: Jupiter, Saturn, Uranus, Neptune. Jupiter, at 318 Earth masses, is the largest planet in the Solar System, whereas Saturn is one third as big, at 95 Earth masses.
    • Ice giants:
      comprising Uranus and Neptune, are a sub-class of gas giants, distinguished from gas giants by their significantly lower mass (only 14 and 17 Earth masses), and by depletion in hydrogen and helium in their atmospheres together with a significantly higher proportion of rock and ice.

Sources: